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REFORT NO, 9k
JULY, 1955,

THE COLLEGE oOFr ATRONAUTICS

CRANFIELD

The Unsteady Aerodynemic Forces on Deforming, Low Aspect
Ratio Wings and Slender Wing~Body Cambinatiors
Oscillating Harmonically in a
Gompressible Flow

Re D. HMilne, B.Sc.

SUMIMARY

A method is presented whereby the !'Slender Body
Theory' can be applied to the determination of the unsteady
aerodynamic forces acting on slender wings eand wing-body
cambinations experiencing harmonic deformations in a come
pressible flow, The analysis holds for subsonic
and supersonic speeds, subject to restrictions which are
stated end discussed.

A simplification of the method is also introduced
which is applicable to many practical cases and calculations
are performed on this basis which lead to mumerical results
fors

1. !'Equivalent Constant Derivatives! for a deforming
slender delta wing using modal functions which are
polynomials of the spanwise parameters

2, 'Rigid' Force Coefficients for a pitching and
plunging, slender, wing-body combination,

These results are given as closed expressions and
in tabular form and some of the results are also shown in
graphical form,

Both the de—ivatives and the 'Rigid' force coeff-
icients are defined in such a way as to agree with the usual
British Sign Convention,
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LIST OF SYMBOLS

The use of a 'bar' over a symbol denotes that it

is the amplitude of the harmonically oscillating quantity
represented by the symbol itselfs

Symbol
A,B

F(x)

Gy

H(5)

L, L

Description Defined in
Section

portmanteau symbols in eqn. to Appendix I
reference axis
function of II(x) 7
constants in H(8) L
torsional mode 4
unsteady lift on rigid wing or body 6
'Rigid!' force coefficients 6
constants in series expansion for B 3
unsteady moment on rigid wing or body 6
'Rigid' force coefficients 6
freestream lMach mumber 2
modified Mathieu function of the third

kind 3
'of order!
constants :Ln series expansion for ;Z.f 3 \
Lagrangian generalised force L
local radius of body of revolution 7
Maximum ! 1 ' 1 ! 7
planform area of wing Appendix I

factor giving length of wing-body
combination forebody as proporticn

of wing root chord Appendix VI




i

Uy freestream velocity 2
v factor giving total length of wing-body
combination Appendix VI
AR wing aspect ratio Appendix I
a speed of sound in free stream 2
b maximum wing span Fige 1
CyCrsCp local, root and mean chords Appendix I
£(x,y) deformation function 3
g, constants in h(§) . L
h(8) flexural mode b
k frequency = llach No, parameter = %ﬁ 3
( lz)rs’ ( lﬁ)rs}
(1) (1) 1 equivalent constant derivatives Appendix IT
a’rs? "8 rs/i
l distance of reference section from wing
root Fig, 2
lB length of body of revolution Fige 3

- -\1
®,)rg (1":2.)1'3 /

, (m ). (). equivalent constant derivatives Appendix IT
“a‘rs? &/'rs) :
N
mym,ymy factors giving position of reference
axis for wing, wing=-body combination
and body respectively Appendix VI
P, constants in series expansion for & 3
‘ Py D, local and freestream pressures 2
) FAY) differential pressure 3
g Lagrangian generalised coordinates L
r polar, radial, coordinate 7
r,s indices and suffices in modal functions &

s(x) local wing semispsn Fige 1




u,v,w

=

XYy

x,(y)

T (x)

II

b/2

Mathieu function (periodic)
time

perturbation velocities

with suffices = various upwash
conditions

right-handed Cartesian coordinates
equation of reference axis

amplitude at reference section in
flexural mode

local cross-sectional area of body

factor giving length of conical nose
on body

A

=

amplitude at reference section in
torsional mode

functions of A\

flutter force coefficients
non~dimensional spanwise parameter
dimensionless amplitude or thickness
elliptical coordinatey polar angle

elliptical coordinate
- 2. 2k
T a T 8
delta planform factor

angular frequency

local and freestream densities
R
= —9— ratio of max, body radius to
0 max. wing span

Figo 1

Appendix IIT
L
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T position of reference section .

= T4b/2 | Appendix I
'] perturbation velocity potential 2
Wyt0 90 local, root and mean frequency

paremeters 2

ve
W, =W, = » etce  Suffix ¢  is used for
o wing=body cambination

in place of ‘r! Appendix V

-0 o @0 b am-

1. Introduction

In this paper a method is given whereby the aero—-
dynamic forces can be calculated for slender, low aspect
ratio wings deforming hermonically in a compressible flow,

The method is applied to a slender, cropped, delta
wing and certain flutter modes are assumed which take the
form of polynomials in the spamvrise parameter., Freedom
of the wing root is allowed for so that body freedoms can
be included, In the latter part of the paper the zsrodyn=-
amic forces on a pitching and plunging, slender, wing~body
combination are evaluated,

The basis of the method is the 'Slender-Body Theory!
which has been applied in comnection with the (quasi—steady)
stability derivatives for slender, wings and wing-body com-
binations (refs. 1,2,3,4,5,6)

The application to an oscillating and deforming
wing has, very recently, been studied by lMerbt and Lendahl

(refe 8)e

The solution of the ‘'cross-sectional' problem,
for the wing, is analogous to that of a two-dimensional
flat plate oscillating in a compressible flow and has been
treated by Timman® (ref. 9) and Reissner® (ref. 10),

The use of the 'Slender-Body Theory' allows the

» Only the regular part of their solution is required
in this case,

e

i -
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analysis to apply at subsonic, , and supersonic
speeds subject to certain restrictions on Aspect Ratio, Mach
number, Frequency Parameter, Slenderness, Validity at subsonio
gpcceds depends on an approximate satisfaction of the Kutta-
Jowkowski condition.

The assumptions of linearised, thin aerofoil theory
are used, the fluid is perfect, the flow irrotational and -
harmonic motions are considered throughout.

2, The Slender-Body Theory

The coordinate system used is shown in Figure 1
where right-handed rectangular axes are drawn from an origin,
0, fixed in the wing, with the x~axis parallel to the main
stream and the z-axis upwerd. It is assumed that the wing
is a thin, flat plate oscillating about its position of zero
incidence in the plane =z = 0, but always lying in the
immediate vicinity of the plane,

The perturbation velocity potential, @, satisfies
the equation

\ 2
vi = % (umg; +§;) B veeeanen(2at)

a

The conditions holding at the surface of the wing
sre specified by a prescribed 'downwash' w(x,y,0,t) and
the stipulation that the relative normal velocity of the air
and of the wing is zero.

Applying the assumptions of the 'Slender Bo
Theory' implies that the x-derivativesin equation (2.1) are
neglected and the two-dimensionel fiow at any cross-section
is then given by the wave equation,

Py + Ppp = if?"ﬁtt cerensencnse(242)

The approximation equation (2,2) is satisfied
(ref. 13,5) ifs

1 -Mi.}

N4
“ds\ . .
dx’}(‘\" n-occo.oooo‘(zuj)a
vhere 1M o is the freestrecam Mach number and s is the
local semi-span, or for a triangular wing if
h-12,| 2 < <16 versernrensa(2.3)D

where MR is the aspect ratio.

© —
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If the influence of the time-derivative term in
(2.2) is so small that it can be neglected the equation
reduces to Laplace's equation, as for steady flow, and the
difference between the unsteady and steady flow cases mani=
fests itself entirely in the linearised Bernoulli Pressure

equation,
_ BQ ag
P-p = - Pm U{-'.'(f)a + a‘t,) 0000'00000‘00(2.4)

This implies that the root frequency paremeter
mst be small (see ref, 11 cases 2 and 5).

3¢ Solution of the Potential Equation

Assuming hearmonic motion of angular frequency, Vv,
equation (2,2) becames,

5W+5zz+i-2-5 = 0 cevensseascs(3e1)
where .
g (x,y,z) el\’t = ¢(x)y’2"t> -v.:ooo-...o(}.z)

The potential @ is subject to the following
boundary conditionss

(a) ¢ is bounded everywhere in the flow and at
infinity all disturbances should disappear in the
proper manner, thus,

i)‘ ¢s ¢z) ¢y"“"> 0 as \,}(y‘:2 + 22-—...-}} oG

ii) The solution at infinity should represent
waves travelling outwards from the origin,

(b) At any point on the wing the prescribed normal
velocity must be equal to the normal derivative
of # at that point,

Let the motion of the point, (x,y); on the
wing be represented by,

£(x,5,%)
f‘(x,y) ein 000000000000(305)

Z

H]

I

f(x,y) will be referred to as the 'deformation
function,'
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According to the usual assunptions of the
linearised theory the vertical velocity of the point
(x,y) is given by,

W = vg-'z— — g‘—""- + U -a-z-

T dat T oot o ox

.= = ivt
ivE(x,y) + q,ofx(x,yﬂ e ’

H]

or,

»
w(x,y) = iv F(x,y) + Uwf (X,7)  eosesenescse(3ak)

X

The condition is satisfied over the projection of the
wing in the plane 2z = O and takes the form,

W(x,5) = 2,(x,5,0) = WE(x,y) + Uy, £, (x,5)  «e(35)

(c) Outside the wing and outside the weke @(x,y,2,t)
must be continuous in planes, x = constant, and
since it is antisymmetric in 2z must satisfy the
condition,

i S s g S o et s S

¢(X:Y’O:’b) = 0.

By transforming equation (3.1) to the Elliptical
Coordinates, (%,n), where,

I

y = 8 cosh n cos 2;}‘ (3.6)

¢
z = s sinh n sin £}

and s(x) is the local semi span, Merbt and Landahl (Ref 8)
have derived a solution in terms of Mathieu functions,

Using che notation of reference 18 the solution
takes the form,

&,
Blem) = s 3, Ne(2) (n,k) se_ (z,k)
with k = y‘i‘ ' 000000000000(307)

* The use of a 'bar' over a symbol denotes that it is the
amplitude of the harmonically oscillating quantity represented
by the symbol itself,

0




where the coefficients, P,» are to be determined from
boundary condition {b),  equation (3.5) which becomes
in elliptical coordinates,

5n (x0,8) = 8(x) W (x,8 cos &) 8In % saveas(38)

Differentiating (3.7) with respect to 1 and
putting m = O (on the x;ving) givese-

T‘/ - “.:
2., (x,0,2) = oy %ﬁ(Ner(f) (n,k)j} se (£,k)
- o
=0
22,
= 1.;__3& Pn sen(?;,k) -vu.o.ot'.oo(339)-
writing,
. { ‘
PXI(k) =pn 'g;'n' ‘\Nel(le)(n’k)> .ot.t..l..l.(5'1o)

#=0

Now if Vv(x,é) is bounded and is a continuous
function of ¥, the series representing & (x,0,Z) in (3.9)
will be uniformly convergent, n

iultiplying (3.9) by se_(%,k) and integrating over
the range, O to =, the coefficients P_ may be determined
in an analogous manner to Half-Range Fourfer Coefficients
since an orthogonality relation exists for the Mathieu
function se (Z,k) (see ref, 16).

The Pn are thus given by}

e

iy .

% w(x):') sin Z’ﬂ sen(;1 ’k) az-a.l (3011)

13

4o

= 28
Pn(k> T ox

and finally the p from (3.10),

The solution, (3.7), is now completely determined
and the gressure distribution on the wing will be given from
(347) with m = O,

As discussed in section 2 it is possible, under
certain conditions, to suppress the time- dependent term in
equation (3.1) an;imthe solution (3.7) then reduces to,=-

i

a = ﬁ::.«:s e-m Ln sin nZ .oooooooo-oo(}o12)
ne=1
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where the 1L y, bre given by,

{7
25§ = . .
- — ' et a—— " Y
nL = Pn(x) = = | Wesin Lye sin nf,, az,
v o vevevesnsnne(3013)
On the wing, .y
,;:-:.. Pl
\fg == C:...i n_ri « 5in nZ -oo.o-ocnoo‘(joJ”-l-)‘
n=1

The differential pressure across the wing plane
is given as,
&p = 2p U‘, (W a + T . --000-0(3015)
20PN TR Uy & z=+0

Lo Symmetric Flutter Characteristics Typical of a Slender
Delta Ving

The simplest, pointed, low aspect ratio wing
satisfying the assumptions of the 'Slender Body Theory' is
the slender -delte wing,.

Accordingly the analysis as devsloped in section 3
is applied to the wing shown in Figure 2,

To describe the possible flutter modes of the wing
a reference axis, xo(y) is used (see Fig., 2) given by the
equation,

2c
xo = mcr + "-'5'1; (1 - 7\) (1 - m) ly! oooooouoo(zh1)

The applicability of an axis such as this to delta
wings is discussed by Woodcock (refs 17).

For any particular flutter motion it is then
prescribed that sections parallel to the line of flight will
twist about the reference axis sccording to some modal
function, such sections remaining themselves undistorted,
whilst the reference axis itself translates according to
another modal function, each degree of freedom so involved
being associated with a Lagrangian generalised coordinate, Qe

# Details of the wing are given in Appendix I .
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The generalised coordinates are defined at reference
sections given by E

Iyl = 1 yeessesasens(le?)

and all motions are measured relative to the mean position
of the wing (plene, z = 0),

A non~-dimensional spanwise parameter, 6§, is
introduced such that

y = 51 toootcoooooo(lh})
and {8/ =1 at the reference sections.
Each degree of freedom will lead to an equation of

motion and a generalised force, Q}:, which can be expressed
conveniently in terms of force coefficients as (omitting el"t),

* % ce (v w2 eb e 4o )
p 132, ‘"g;" s T rs ¥ s/ * %
G 1 .......o.ooo(zl'ol*')

on the assumptions of the linearised theory, where,

s = r = nuuber of degrees of freedom

and w o= mean frequency parameter
ve Note .- %n is the mean chord of the
= —ITQ_Q *  half-wing. See Appendix I,

In what follows the suffices + and - will indicate
wvhether a function applies only for y >0 or y<O
respectively.

Lels Uncoupled Yodes

ILet there be one uncoupled mode in flexure and one
uncoupled mode in torsion described by the modal functions,

h(8) and H(8) respectively, so defined that,
’h(_t1)! = {H(_t 1)’ = 1. ooono‘cooo'-(405)

If :«;e:"wG represents the translation of a point
on the reference axis, measured from the mean position,

% The generalised coordinates and forces are amplitude
functions but the bar notation is not used in their case,
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positive upwerds, and aej‘wb the rotation, positive leading

edge down, of the section through that point, then,
zoh(S) (
aoH(E)) v\

A

i

000000.0000‘(406)
and, a

{f

where Z and a_  are the amplitudes at the reference

(e}

sections, y = + l.

Now, if the generalised coordinates are chosen so

that,

L)

1 c’;m 3 oooluooo.ooo(h-'?)
and B =T % i

then the deformation function F(x,y) of equation (3,3) takes
the form,

f = lhq’l + (x—xo) ‘é_n: Hq2 ooooo.ouoooo(zl-o8)‘

It will be convenient, for the aerodynemic problem,
to consider the functions, h and H, each to be polynomials
in &8s thus, far symmetrical modesy

"o b7 (1)
and H =<:.‘._,\_Gs ‘853 { csanseonceas{ite

I’,S = 0’1’2’ see

Equation (4+8) becames, for the half-wing for
which y >0,

—

< S?
s g:é..,\ G"35 ¢ 9

mn A
vesssensse{lell)

(<-7 r‘; 1
f = Zgé\grﬁ ( q + (x-xo+) =

—~

It is now required to find the two generalised
forces Q1 and Q2.

Thns’ L

B

Wt Z{Pv (5;‘4’)%l dx dy o.-'oo-c(rl;-.’ﬂ)

+

e ——

» Q1.6q1 =

[ 7]

« !S ' indicates that the area of integration is over the
wing planfarm for which 0« s(x) <y only,
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— wen,

i
whereg A p dx dy; is the total (incremen‘bal) aerodynamic
force st the poini (x,y) on the wing and is given by
equation (3. 15) when the velocity potential derived for the
assumed deformation function is substituted.

~ From (4+10),

-

< )
(&f ) = 1 zfﬁ:; grs { 5@1
M r

and the force, Q1, is seen to be built up from a sum of

integrals of the form,

. "'“ 2

1

{
}! A—~ gr 8 L GJC da .........'..(4.12)
S

In the same way the force, Qz, is expressed as a

sum of integrals of the form

2 i -
l
] Ex; !), (x—xo+) Ape G 8%, ax @5 (Le13)

It will be clear that many of the integrals (L412)
and (4e13) will be identical, apart fram constant factors.

4.2, Coupled Modes

The deformation function, ¥, now takes the forms
] o+

f = :M_\,ilh(B) + (x=x )—-H(&)Sf . q. oo (bell)

+ r m
there now being r degrees of freedom.

The functions h and H are as defined before in
equation (4,9) with r = s so0 that equation (u.ﬂ;) becames,

? = f‘\qr;'lgr'l'(x"x ) L"‘ Gj 5r "0(4'15)

oy

C
m

~

and QT is given by 8
i
s
+
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Finally, from (4.15),

Q 75 As
o t,); A

S,

This is a sum of integrals like

(x-xw)

. ) 8, dx as
r

ocoooooo..uo(l!-016)
(4412) and (4e13),

Re Calculation of the Velocity Potential end the Generalised
Forces for the Assumed Modes of Paragraph L

The coefficients, P n? in the series representation

of § are given by (3.11) and since f(x,y) is expressed
in polynomisls of (8!, and hence of |y}, integrals of the
following type are met withe

I}

i
lCOSS Z,,‘ gin Z_,,’ Sen(Z,1,k) dz_,1 . 00000000.000(501)

J

Such integrals can be written as the sum of integrals
of the form

i

[

Jsm PZ-U" Sen(é1,k) d;1 oooo.nooo-oo(5.2)

Using the Pourier Series expansion of se (?;,,k)
integrals such as (5.2) becone,

=7, 3) )
r=1

k‘—.«m—-&
-

sin 1"2;1. sin Pé,] dZ_,1 os..ooooo(5.3)

When s is even (equation 5.1), the limits on
(543) are O to =, quite straight forwardly, as indicated
by equation (3.11) end only a finite number of terms is
obtained for (5.1 When s is odd, owing to the
assumption of syrrmetry, the limits on (5 3) reduce to 0 to =/2
(or 7/2 to n) and an infinite series is cbtained for (5.3),
and hence for (5.1)s However, only a few terms need be
retained in practice.

The velocity potential on the wing, 8, is now
fully determined and the corresponding loading is given by
equation (3%.15),

The generalised forces give rise to :Lntegrals like
(omitting constants),

o Lo

3 . i r
\_}I (1.. x * Uuw vgfj o dx a
&\‘; . ;

+

............(5-4)

o e e e o e T
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and

o ST

iy m) a8
x('ng'f't?—w ) 67 o dx dd 000000000000(505)
{ [y YR
S,

These integrations must, in general, be done by a
graphical or numerical means, except when the time~-dependent
term in the potential equation (3.6) is suppressed and the
Mathieu functions take on their degenerate forms, '

The epplication of the analysis to antisymmetric

flutter modes follows the same general lines as given for
symmetric modes,

5¢le Equivalent Constant Flutter Derivatives

By analogy with the flutter derivatives of twow
dimensional (strip) theory it is possible to define a set
of 'equivalent constant derivatives',

These derivatives are constant over the span of
the wing and give the correct generalised forces when inter-
preted in the conventional sense,

The 1lift and moment on a strip of unit width are
defined in terms of derivatives such as

*»
Pty Boe Uy

m,y Myy M , My (ref. 18)
where the 'stiffness! derivatives include the !'inertia’
derivatives, 12 s o s lb. > Moo
Equivalent constant derivatives,
(1), (1)
rs rs
etc,

(mz)rs ) (mz)rs ’

are defined from the force coefficients of equation (4.4) in
Appendix 1T,

As with the farce coefficients the first suffix
refers to the generalised force and the second to the mode.

» See Appendix IT for discussion of sign convention.
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Apert from the analogy with 'two-dimensional!
derivatives the concept of equivalent constant derivatives
is useful in that it facilitates direct comparison of sets
of derivatives derived for different modes. For example,

ect derivatives in one freedan are made independent of
modes in other freedams. (See Appendix III),

6 Representative Results

The preceding analysis has been applied to the
case of a triangular wing (Fig. 2, = 0) using uncoupled
modes,

Equivalent Constant Derivatives have been calculated
for the flexural modesg

nd) = ¥ 5 r=0,1, 2
and torsional modes}
H) = 18f° 3 s =0, 1.

Modes such as these have been taken in pairs, one
in flexure, 5|¥! and one in torsion, |8} 1, giving six
'sets! of derivatives,

The accompanying table of mumerical results (Teble T)
shows the order of the derivatives and their signs (for m = )
and a set of general expressions for the derivatives is given
in Appendix III together with the results of a calculation on
a cropped delta for ry =8y = 0 only.

The 'demping' derivatives l& » my and my are
plotted against 'm' in Figs. 8 9 and 10

By taking T, =8y = O and m =1 the derivatives

are obtained for a rigid pitching and plunging wing referred
to the trailing edge - use of the usual transformation
fornulae then refers the derivatives to any other axis,

This has been done for a trianguler wing (A = 0),
a cropped delta (A = 1/7) and a rectangular wing (N = 1)
for an axis at 0,500 Cpn and the results are presented in
Table II,

In Fig. 11 the'cross~damping'! derivatives my o
la have been plotted against 'm' for these wings,

In this case of a pitching and plunging wing the
generalised forces Q1 and Q2 have simple interpretations
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and do in fact represent the unsteady lift and moment
amplitudes on the ccmplete wing, i.e.,
2

L Q 1 \
s . 53 X -?—c- s (+ve upwards)
em U 1 S £ U&,, 1 T
and
Q 2 ‘
-—-—M-é-—- = --—-—-g—-—-j— x 3-1-2- s (+ve nose dovmards)
Pf’»; qcfw SCI“ P G U-')'«"- t cr
e i I.l‘t.‘.....(6.1)

The expressions for 1ift and moment will be in
terms of the dimensionless emplitudes, y

.r‘ZO\
(-—-—) and a
c o
T
and the relevant frequency parameter will be,
S S A
r  U. = ‘m U+7\).

It is convenient in this comnection to define a
set of force coefficients for rigid motions only since in
later paragraphs unsteady lifts and moments on rigid bodies
and wing~body combinations are considered,

Coefficients LZ, Lz eos etc. are defined by the
expressionss

L R 4 ) .
= - P2
: i (L + erz) {3 (La + erd) a
e
M i %o,
. - M S 3
- =, (1.1z + iwer) { cr} + () + do, M&) a
i“‘ (:(; ..‘Q....“.‘.(6‘2)

and these will be referred to as 'Rigid' force coefficientse

As for the definitions giving the equivalent
constant derivatives (Appendix II) these rigid force coeff-
icients are signed to agree with the normal British flutter

sign convention
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EBquivalent Constant Derdivatives for rigld wings plunging and

pitclring about an axis at & ¢

r

!

Equivalent Trisngular Cropped Rectangular
Constant Wi Delta ' Wing
Derivatives (3=0) (A=1/7) (n=1)
L 2 I, 2
1, 6" -.585 o 2 bm
(.524) (.785)
+ X + E
1y b +¢785 b
(.785) (+785)
-5 0)2 + + E
1 2m ok sl 785 u
(a262) (4785) (,785)
7 I
+ +
Z& % +1407 8
T 2
=W, 0
o 12 "m 245 o 2
z (.262) m
- E s
mz T‘z "0081*-5 8
(4197) (+392)
. %5‘ wm2 - % ‘,‘137(»51 -,0845 ﬁ,—; °)m2 + %
¢ («157) (197X (40655 (#392)
- Z . X
my 8 - 4386 16
(4392) (4197)

NOTES Fig,ures' in brackets are decimal equivalents of
fractions of T
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7« The Pitching and Plunging Slender Body of Revolution

A set of flutter force coefficients for a pointed
slender body of revolution can be calculated in an analogous
manner to those of the wing by adopting polar coordinates
instead of elliptical coordinates when solving the potential
equation and in the specification of the boundary conditions.

Probably the only case of interest is the rigid
pitching and plunging body and accordingly this case will
be dealt with, The cartesian coordinate system for the
body is the same as for the wing and is shown in Figure 3

In each cross~section, x = const,, take polar
coordinates}

v rcosé?

{ cesessenanee(7el)

z r sin Z J

1]

then the potential equation (3.6) transforms tog
. 2 2
1 o) 0 fe) Z y
F 5 (rl) +1—2-. +—2—5=0 cossase(7e2)
r a

r ar agZ

Consider the body movements to consist of a
vertical translation (+ve upwards) and pitching about an
axis,

x:xo = m.B ZB o-ooooocoooo(?o})
parallel to the y~-axis (nose-down pitching +ve).

By enalogy with equation (4.6) we define z, to
be the amplitude of the displacement of the point,
X=X, on the body axis and a to be the amplitude of

the inclination of the body axis to the Ox axis, Then
the motions produce at a point, x, on the body axis the total
upward displacement,
ivt
(zo + (x-xo) ao) e .

Taking the body length, ZB, as a reference

length the vertical velocity (equation 3.4) is,

b

- 5 ," zo - %" {
VV(X) = iy ‘! ZB(T) +" x-xo + iV) aoé 000000.0(704)
\. : ) ot

B/ & /
Vriting 7" (x) for the local cross-sectional area
of the body, the potential mear the body tekes the form,

.y
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DD

(F) = -w(x) i,}é‘zcl.. sin 4 esesesceascel(7e5)

.r=+R
The pressure at any point on the surface of the
body is . .
< (3IL  iv ..} sin
P el leyaxt U, O
where T

II(x) = = ﬁzx) F(x)

The unsteady 1ift end moment, L and M follow
by integration of (7.6) along the body,

-‘op-ro-’ooooc(706>

The 'rigid' force coefficients of equations (6.2)
have been calculated for a cylindrical body, with a conical
node as shown in Fig. L. These are based on the Aspect
Ratio of the geometrically similer wing having its root-chord
equal to tho length of the body and

R
'-g-‘ = 570' (see Figure 7)

where R is the meximum (base) radius of the body.,
The coefficients are given in Appendix IV,

By putting o =1 and /\ = (4-)) it will be
seen that the expressions of Appendix IV are identical with
those that would be given far the rigid cropped delta wing
using the equivalent constant derivatives of Appendix IIT
with B = O and equations (6.1),

8¢ The Slender Wing=Body Combination

8e¢1 The rigid pitching and plunging combination

A set of 'rigid' force coefficients will now be
derived for the slender wing=body combination shown in
Figure 8,

This problem will be dealt with rather differently
from the wing and slender body cases in that the velocity
potential will be found, not directly as a solution of
Laplace's Equation, but from the two-dimensional potential
for incompressible flow normal to a flat plate.

The required potential will not generally satisfy
the two-dimensional wave equation (2.2) and hence the
gsolution will be subject to similar restrictions as the wing
solution for k-3 O.
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Using the Joukowski Transformetion (see Fige 6)
the veloelty potential for the flow around the body config-
uration of Fig, 6 (see ref. 4) due to a motion w of any
section in a fluid at rest ocan easily be found and conven=-
iently expressed in two parts,

apppr——.

Lt 31 by son et ¢

{ 2
2
=/ (105) - wt e/

’/ ! Loy / 14.-‘
SR ARG

erevecensee(8al)

where B(#) is the potential on the body (r=R) and w(g)
is the potential on the wing ({ =Oor =, y=7r).

It will be clear that the force coefficients for
the wing~body combination of Fig. 5 can be considered to be
the addition of two sets of force coefficients; wviz.,

(1) the farce coefficients for a triangular wing on
a cylindrical body, downstream of the lateral
plane through the wing leading edge and hody Jjunction,

(ii) the force coefficients for a pointed body upstream
of the wing leading edge.

The coefficients (ii) have been calculated in
scction 7 (Appendix IV).

The coefficients (i) can be calculated using (8.1)
with the axes and notation of Figure 7.

For the combination, the velocity, w, will teke
the same form as far the body alone, i,e. equation (7.4),
thus,

"\

C(842)

in
!
i

o
s

i

by -
- PO O) o
- i — - - a a X
w(x) = iv | !cr(cr_. X 8, + Ty 4| + a
A A

-—
»

The loading distribution is given by the pressure
equation (3.15) and 1lift and moment by

r R 18 }
L= %J (/.\.P)Body + L ([_p)w.dy.f( ax
s o‘cr 3\,. o) YR ‘
and o , iR - 4
tr ) P . - ;
" i :
1= ¢} (Ap)gdy + (D) (x-x_) dx
17 Gcr z,i.j o] “w R ..Oooo‘{o 0000(8.3)
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Complete expregsions for 1ift and moment on the
clyindrical body and trianguler wing lead to the 'rigid!?
foarce coefficients which are given in Appendix V. These
coefficients like those of the body are based on the
trianguler wing heving root chord, c_, and maxinum
semispen s = b/2 = Ro/o‘. T

The force coefficients for the whole wing~body
cambination of Figure 5 are given in Appendix VI and the
variation of the 'demping' force coefficients I, , L& ’ MZ ’
M& with o is shown graphically in Fig. 12.

In adding the appropriate coefficients of
Appendices IV end V the definitions of Figure 5 and Appendix
VI were used and again the triangular wing is used as a basis,

9, Discussion

The use of the 'Slender Body Theory'! for uasteady
flow problems leads to a solution for the aerodynamic forces
which does not involve long camputation and meny geometrical,
and other parameters can be carried along in the analysis
without having to be specified definitely at the outset.

The restrictions of the theory as discussed in
section 2 seem to be somewhat severe but there is evidence
to show (ref. 8) that for a rigid triangular wing of aspect
ratio, 1, at a Mach number of 1.25 and far a frequency
parameter, w_, up to 6, the theory appears to be quite
velid, Furthermore s results for an aspect ratio of 0.5 show
that when the time derivative terms are neglected the results
differ fram those given by the complete solution only if
w_ > 2 for a Mach mumber range of 0 - 1,25 (rigid triangular

wing).

Owing to the reed to evaluate several terms of
the Mathieu function series when deriving the full solution
it is much longer than the simplified case (for small root
frequency perameter) and it would always be worthwhile to
question whether the full solution is really necessary in
any specifiedcase,

With the type of wing to which this analysis can
be applied, it is very unlikely that the root frequency
parameter will exceed ebout 0,5 so that in many cases the
simplified approach would suffice,.

The force coefficients +y,b,c of equation (4.4)
are dependent on Mach mmber and frequency only through the
parameter, k, in the general solution, consequently, in
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the simplified case which implies that k-0, the coeff=-
icients are independent of frequency and lach number,

It has been found, both experimentally and
theoretically that the variation of flutter force coefficiermts
with frequency decreases as aspeot ratio decreases so that.

this is not a surprising result from a theory which is correct
far R-—x0,

The preceding remarks can be taken to apply equally
well, in principle, to the wing-body combination.

It is interesting to note that the analysis used
by Lewrence and Gerber (ref. 19) (subsonic) when taken to
the limit MR ~—20 gives results for a rigid wing which
agree with those found here and by Garrick (ref. 14).

In this connection it isg also interesting to study
their results when plotted against aspect ratio, The slopes
of the curves (force coefficients) at zero aspect ratio are
carrectly those given by 'Slender Body Theory'!' but, in
general, the curves depart from their original tangents
extremely rapidly. It might be suggested therefore that
force coefficients derived using 'Slender Body Theory', if
applied outside their range of reasonable validity, will
give magnitudes which, in generel, will be very different
from tl))e 'true' values., See also refs. 20 and 21 for which
R =3), '

Fige 10 shows that for an axis at the trailing
edge of the wing, no matter which torsional modes are chosen,
the direct demping derivative m, is zero indicating that
an undamped pitching oscillation would be possible =~ for all
axis positions O« m <1 the derivative gives positive

damping.

Vhen w.---> 0 the 'rigid! force coefficients give
the values of 1if%t and moment for the steady case as found
by Jones, Spreiter and others (refs. 7 and L)
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APPENDIX T

The Cropped Delta =

Definitions and Geometrical Properties

See Figure 2 ¢ =

[N ES

Mean chord, c,
Area, S

Aspect Ratio, R =

Iocal semispan, 8 =

Iocal chord, c

]

Ratio, L. Bt

m

Reference Axis, Xx

[e]
thus, 2 =B
m 14N
and
By UMy
“n (14)\)

Frequency parameter,
(Yean)

c,. (1 + 1)

!
o‘
Q

2e, (1
me + (4=7) (1=m) }¥i

A+ B 18

(%)
(5)
(6)

(7)

(8)

(9)

(10)

(11)

et
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APPENDIX TIT

Equivalent Constant Derivatives ~ Definitions

The following equivalent constant derivatives are

appropriate to a gystem with the usual British sign convention
i.,e, 2z-axis downward, lift positive upwards, moment and angle
of attack positive nose-up,.

(2) Uncoupled Modes

i,

One mode in flexure, one mode in torsion
\1/'5
(wyaa02 4+ 0,.) = 1 ] h%.,as
“Y11% 11 T 'z *

Yo
\1/'1:
(=, 02 + 0,0) = 1 2. hH a8
2% %2/ T Y c.
do m
"71/"7
( W+ o ) = (=m) 2. H.,h a8
21%n 21/ T Vg c_ *
do ™
/%
2 c 2 H2
(-‘Yzzwm + 022) = (-ma) (E-\ o 38
Jo L m/
/%
c 2
b11 (})mzwmo 12 'C""'oh d6
o B
A/ . 5
by o =@ Ly (;—) heH, a5
(,‘ fo) n
s\_j/'r 5
‘ = e\ as
oy Wy = @y (-mi) ] (c ) Hh

Vo m
f‘\1/’U‘ ‘ 3
(2-‘) B as .
¢

I

o’
£
I

22 ¥ = % (—m&)
(¥ o)

ii, r modes in flexure, & modes in torsion

Derivatives such as (1,) , ewnd (m,) |,
rr s

-




5=

will be defined in the same mammer as in (i) by integrals
such as,

/< (/%
hoeh,d and & -g—- Hoo By dd respectively.
) o Jo ©®
(b) Coupled Modes .
, p/
(—xrs W+ Crs) = (Zz)rs heh as
2 tho
&
2 _ i [
(-Yrs Up * Crs> = (l‘a) | ¢ h, Hy &
1 rs . i
a o
etce W/ ; 2
= S
(brs wm)z =% (zd) I'e ) h, H ds
& 8 jo W B/
etce = by analogy with (a)i,
A term such as  (-y, mri + crs) is obtained from

Z
the real part of the term in the total expression for Qr

which involves both h, and h 3 and (P,g wm) 1, is obbained

fram the imaginary part of the same term$ other terms are
obtained in a similar manner.




(a) Equivalent Constant Derivatives for Trianpular Wing (A=0)
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APPENDIX ITT

Results of a calculation using uncoupled modes

i

Flexural mode h(8) = {8|¥ , r = 0,1,2

Torsional mode H(S8) = {GIS » S =0,1.

r=0. 5=0
w2
lz = --gmeR
Y
12 = +-[; B
{ 2 =z}
l, =- }Lz o (o863 = 1.36m) w, -5 B
J
1y =+2% (1.82 - 1.15m) R
i 2
m, = 7 (4288 - J455m) o o R
my = - %’3 (o121 = 4288m) R
m, = %’E‘}Lz(.owo - 4200m + o158m°) ga;
= ':12' (0216-3 - .576!11)% R
s 2
my = 5 (=353 + o703m - J354m°) R
r=1, s=0
2
lz =—g7c'wm R
Zz = +%" ¢« B
L=+ 35 (= o139 + 205m) o2 + 333 R
a m j
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+122.R

=55

349m) R

3 (4139 = 4205m) o o R

2%
I

(

349m) R

S(.M?. - J00m + o317m°) wli

+ (= o121 4+ .288m)3 R
J

Z (= 4353 + o703 - J35l7) R

2

osm AR

- 6x) 11 (o490 = +690m) oo; - .0625} R

N

+ 225 (4690 ~ Ji90m) R

2% (,082 = 4115m) o R

- %fﬁ (s0730 = +123m) R

“

22 )12(,0711 = .200m + J15607) o
ol { I

i
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~3lm

-3 !%(-220 - .353111) wfi - -333)3 R
{- »

+ 3 (b2 = J27hm) R
3 (o110 = ,176m) wi R
- 3 (107 = o27km) R
1225 8 (,00359 ~ 40100m + 400800K") o
- %:' (40430 = ,0930m)£ R

30 (<0250 + +OL92m = (O2u3m-) R

S I
5'K e W R
+%. R
. 5 z
- iu (+0592 = o09%1m) w = | R
+ 2 (0,540 = 0,355m) R

6 (,0395 - «0612m) u « R
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(b) Equivalent Constant Derivatives for Cropped Delta

(\, general)

r=0,8=0 only
lz =—7t[31u)im
1,2 =+%B
L, ='jﬂ(ﬁ3-%;ﬁ1-;%ﬁz)w§-f) R
5 —_
w oo B 2 (e k52
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LA {2 oA 2b3B)
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(1 + 5 = 3/22°%)
15(1 + 2)°

1 + 4

= 20(1+1)

the above derivatives when \ = 1/7 are

2
—".5850)m.m

+ J2d

FIr

s,

- :m:(.w - «226m) wé - %g R

4

i ~
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APPENDIX TV

'Rigid! Force Coefficients for a Slender Body of Revolution

with conical nose

(see Figure k)

Definitionst
Iength of body = IB
length of conical nose = {3 lB

Reference axis at distance m.B ZB from nose

Frequency Parameter Wy = le/Uw .

The force coefficients are based on the wing having
a geometrically similar planform to the body, thus;

RN 2 ve
so that LT?-) = (-—g) and Wy = f]—£ o
B N CI‘ ¢ A

z o 34
IS
L2 =+ZOZ.AR
( /\2> )
_ . 2 2[\m]3 1 b 2 -
Ih = - 4.0' é'<;.3._.+ Z = Mg = Wy 1j R
_ .52 2.&) ,
L& ..+2+o‘ (Q-mB~ 5 R
x 2 f20mp AT ,
M, = .3 l\ 7 +-12~-mB--Z;-)mB . R
x 2 20\ 3
Mﬁ =-ZO‘ (-'-3— -m.B')I‘R . .
. 3 '
PR X (TN Y\ SR % et ) Y.
W T % 37" 95 " Wpt gt 3 B

=
>
It
I
1A
Q
1
s
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APPENDIX V

'Rigid! Force Coefficients for Triangular Wing on Cylindrical

Body
! (see Figure 7)

, 0, =0, .
| =%;ir- LZ =~§13-0‘2-0‘4+%0‘3’)w R
I, =+ (1 =022 R
L, =—-}§%\§‘%(1-202+c4-w4zm) -
= '

i 3 3
| -(1-0‘22}1&1
i (2P Py e (1= P2
Ly =+3/5(2-3 ) = m, (4 )).IR

(1 = 26° + o* = 1™ o)

| ) -mc<%—~0'2+%03-o‘9

;
x {1 by . o 22
Mz=~21‘5(1-405+;c)-2(1-c)¥{m
- o
r
s flld
Yo = 4%[; 5 *° w°?
m
) --22(1-202-4-0‘1"-40‘&1:10‘)
: ) +m02{1—0‘2+%o‘5-0‘4) wi
| - o, 7))
P -4%(1-m3+x%—§90w%2(m
My =--72-‘§%(1—0‘2)-mcz(1-0'2-o‘3+o“4)
\e m

+4L<1-£F§m

-

—————




'Riglid! Force Coefficients for a Slender Wing-Body Conmbination

(see Pigure 5)
Definitions.="
Total length of combination = Vo, (1)

Ratio of body length to wing root chord = E‘E =T
T

But Ve, = (IB + cr(‘l-cr) ) , see figure 5,

so that fram (2),

T=V=-(1=0), (3)
Also , Z, 2%y zo>
&) (-2 (3 ©
B
and
Q)B = T , (DC (5)
ve
w = W, =3
c = r 0

It is essential that the position of the reference
axis should be unique when measured from the apex of the wing
(mc cr) and from the nose of thc body (mB . lB). This

requires that (see figure 5) ¢

Iy IB = ZB-o‘cr+mccr .
. (o=m)
LeCo n]B = 1 - T (6)
V- 1+mc
or P = ¥=1+o (7)
Length of conical nose =/ Iy = £ Te., (8)

This gives nose-length as a constant proportion of body length
ahead of wing root, If a nose length which is a constant
proportion of total combination length is stipulated then [\
must be replaced by an expression of the formg

- ]
AN .—:/\{y—-—-—%—i-q-{ = const, (9)
Notel In the above definifionst T

v z (<)1~<r> (10)
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